设为首页收藏本页资料仓库证券大数据English Data

分子

2021-02-26 12:10:57

分子(molecule)是一种构成物质的粒子,呈电中性、由两个或多个原子组成,原子之间因化学键而键结。能够单独存在、保持物质的化学性质;由分子组成的物质叫分子化合物

一个分子是由多个原子在共价键中通过共用电子连接一起而形成。它可以由相同的化学元素构成,如氧气分子O2{\displaystyle{\ce{O2}}};也可以由不同的元素构成,如分子H2O{\displaystyle{\ce{H2O}}}。若原子之间由非共价键的化学键(如离子键)所结合,一般不会视为是单一分子。

在不同的领域中,分子的定义也会有一点差异:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在气体动力论中,分子是指任何构成气体的粒子,此定义下,单原子的惰性气体也可视为是分子。而在量子物理、有机化学及生物化学中,多原子的离子(如硫酸根)也可以视为是一个分子。

分子可根据其构成原子的数量(原子数)分为单原子分子,双原子分子等。

气体中,氢分子(H2{\displaystyle{\ce{H2}}})、氮分子(N2{\displaystyle{\ce{N2}}})、氧分子(O2{\displaystyle{\ce{O2}}})、氟分子(F2{\displaystyle{\ce{F2}}})和氯分子(Cl2{\displaystyle{\ce{Cl2}}})的原子数是2;固体元素中,黄磷(P4{\displaystyle{\ce{P4}}})原子数是4,S8{\displaystyle{\ce{S8}}})的是8。所以,氩(Ar{\displaystyle{\ce{Ar}}})是单原子的分子,氧气(O2{\displaystyle{\ce{O2}}})是双原子的,臭氧O3{\displaystyle{\ce{O3}}})则是三原子的。

许多常见的有机物质都是由分子所组成的,海洋和大气中大部分也是由分子组成的。但地球上主要的固体物质,包括地幔、地壳及地核中虽也是由化学键键结,但不是由分子所构成。在离子晶体(像盐)及共价晶体有反复出现的晶体结构,但也无法找到分子。固态金属是用金属键键结,也有其晶体结构,但也不是由分子组成。玻璃中的原子之间依化学键键结,但是既没有分子的存在,其中也没有类似晶体反复出现的晶体结构。

历史

分子的概念最早是由意大利的阿莫迪欧·阿伏伽德罗提出,他于1811年发表了分子学说 ,认为:“原子是参加化学反应的最小质点,分子则是在游离状态下单质或化合物能够独立存在的最小质点。分子是由原子组成的,单质分子由相同元素的原子组成,化合物分子由不同元素的原子组成。在化学变化中,不同物质的分子中各种原子进行重新结合。”

在阿伏伽德罗之前,化学家约翰·道尔顿在1803年及1811年提出的定比定律及倍比定律,也支持分子学说,因此许多化学家接受分子学说。可是许多逻辑实证主义者及像恩斯特·马赫、路德维希·玻尔兹曼、詹姆斯·麦克斯韦、约西亚·吉布斯等物理学家不接受分子学说,认为分子只是一种方便处理的数学结构,不是实际存在的物质。一直到让·佩兰在布朗运动相关的研究中,才证实了分子学说。

特性

分子大小

大部分的分子无法借由电子显微镜看见,最小的分子是H2,其键长为0.74Å。有机合成中常用到的分子大小约从数Å至数十Å。曾经制造过直径1000 Å(100nm)介孔氧化硅英语Mesoporous silica,是最大的分子 一般分子虽无法由电子显微镜看见,但利用在特定环境下可以用原子力显微镜观察,甚至可以观察到一些小分子及一些原子的外观,而像DNA是高分子化合物,就可以用电子显微镜看见。

大型的分子包括有高分子超分子等。

半径

等效分子半径是指分子在溶液中所占的大小。

分子式

分子的一个特征就是组成化合物的元素比例总是整数。例如,纯水中氢和氧的比例总是2:1,乙醇中碳、氢、和氧总是以2:6:1的比例组合。利用各种元素的比例和化学符号就可以组成分子的实验式。但是单凭实验式是无法决定分子的类别——如乙烯的实验式就与丙烯一样(同是CH2),尽管这两个分子的原子数或质量都不同。

要反映分子中各种原子的真实数量,就要利用化学式。例如乙烯和丙烯的化学式分别为C2H4{\displaystyle{\ce{C2H4}}}C3H6{\displaystyle{\ce{C3H6}}}

分子量可以用化学式计算而得,是分子质量与C质量的1/12之比值。若是网状固体,则会用化学计量方式计算.称为式量英语formula unit

分子几何

由量子力学定律的演算,分子有固定的平衡几何状态——键的长度和之间的角度。纯物质都是由相同几何结构的分子组合而成的。分子的化学式和结构是决定它的特质,尤其是它的化学活性的两要素。

同分异构体是指二个化合物组成分子的种类及个数相同,但其结构不同。同分异构体有相同化学式,但因结构的不同,有不同的特质,例如乙醇和甲醚有不同的结构,但其化学式都是C2H6O{\displaystyle{\ce{C2H6O}}},属于结构异构。

立体异构体是一种特别的异构体,它们可以有很相似的物理及化学性质,而由于原子在空间中的排列不同,具有相当不同的生物化学性质,例如维生素C有两种立体异构体,但人体只能吸收其中一种的维生素C。

分子的电气及光学特性

分子在电场中的特性和分子的电子分布特性有关,包括其偶极矩及极化性。

分子的电偶极矩是指分子中正电荷和负电荷分布的不对称。分子若有对称中心,例如H2{\displaystyle{\ce{H2}}},则偶极矩为零,反之亦然。

分子的极化性是指分子因外在电场作用而改变其电子云形状的程度,结果会使得分子会因电场而产生电偶极矩。

分子的光学特性和其在光产生的交流电场下的行为有关,也可以用分子的极化性来得知。极化性和光的折射、散射、光学活性及其他分子光学研究的特性有关。

分子的磁特性

大部分化合物的分子及巨分子都是抗磁性。分子的磁化率χm{\displaystyle \chi _{m}\,\!}是表示外磁场中被磁化的程度,抗磁性性物的磁化率略小于零。

有永久磁矩的分子具有顺磁性,包括外层电子数是奇数个的分子(例如NO{\displaystyle{\ce{NO}}}自由基)以及分子中有部分原子的内层电子未填满(如过渡金属)。顺磁性物质的磁化率会随温度而变化,因为电子的热运动会降低磁场中的磁矩。

分子间作用力

分子间作用力是指电中性的分子在空间中的作用力,会随着分子的极性而不同,其作用力相当复杂,一直到了量子力学出现后才对分子间作用力有进一步的了解。

两个极性分子(总偶极矩不为零的分子)之间会有分子间作用力,可能会使分子相吸或是排斥,若分子的偶极矩没有互相抵消,其作用力会变强。

若是一个极性分子和一个非极性分子,会有产生诱导性的分子间作用力。极性分子会极化非极性分子,若极性分子的负电荷较靠近非极性分子,会诱导非极性分子,使其正电荷较靠近极性分子。

分散力是指两个非极性分子之间的分子间作用力。一般来说,非极性分子的总偶极矩为零,不过在特定时间,因为电子在分子中的分布情形,会产生瞬时偶极。瞬时偶极可能会极化其他的非极性分子,或是两个有瞬时偶极的分子会互相影响。

相关理论

资料专题:分子相关理论

化学、物理学及生物学中的分子

分子是化学的基础概念,大部分有有关分子结构及功能的信息都要透过化学研究才能得到。分子结构决定了化学反应的特性。

分子的结构及性质都是被分子物理学中研究的物理现象所影响。在物理上,分子的概念可以说明气体、液体及固体的特性。例如分子扩散的能力、黏度、导热系数等。第一个直接证明分子存在的实验是在1906年由法国科学家让·佩兰,在研究布朗运动时发现的。

所有的生物都是因为分子间化学性的、非化学性的作用巧妙的平衡而存活的。对于分子结构及特性的研究是在生物学或是科学上都很重要在。

生物学、化学及分子物理学的进展产生了分子生物学,依照生物中基本化合物的结构及特性,研究生物的基本特性。

相关条目

参考文献

资料专题:分子参考文献

外部链接

资料专题:分子外部链接