资料仓库证券大数据假新闻展览馆

定理

2021-07-16 12:27:50

定理(英语:Theorem)是经过受逻辑限制的证明为真的陈述。一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。(例如:某些a{\displaystyle a}x{\displaystyle x},某些a{\displaystyle a}y{\displaystyle y},就不能算是定理)。

猜想是相信为真但未被证明的数学叙述,或者叫做命题,当它经过证明后便是定理。猜想是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述可以不经过成为猜想的过程,成为定理。

如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统)。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理。

在命题逻辑,所有已证明的叙述都称为定理。

各种数学叙述(按重要性来排列)

  1. 数学原理
  2. 公理(也称公设)-公理是没有经过证明,但被当作不证自明的一个命题。
  3. 定理
  4. 命题-通常,命题是一个可以判断的陈述句,亦有既的命题(悖论)。
  5. 推论(也称系、系理)-一个从定理随之而即时出现的叙述。若命题B可以很快、简单地推导出命题A,命题A为命题B的推论。
  6. 引理(也称辅助定理补理)-某个定理的证明的一部分的叙述。它并非主要的结果。引理的证明有时还比定理长,例如舒尔引理。
  7. 假说-根据已知的科学事实和科学原理,对所研究的自然现象及其规律性提出的推测和说明。

结构

定理一般都有许多条件。然后有结论——一个在条件下成立的数学叙述。通常写作“若条件,则结论”。用符号逻辑来写就是条件→结论。而当中的证明不视为定理的成分。

逆定理

若存在某叙述为A→B{\displaystyle A\rightarrow B},其逆叙述就是B→A{\displaystyle B\rightarrow A}。逆叙述成立的情况是A↔B{\displaystyle A\leftrightarrow B},否则通常都是倒果为因,不合常理。若果叙述是定理,其成立的逆叙述就是逆定理

  • 若某叙述和其逆叙述都为真,条件必要且充足。
  • 若某叙述为真,其逆叙述为假,条件充足。
  • 若某叙述为假,其逆叙述为真,条件必要。

逻辑中的定理

资料专题:定理逻辑中的定理

参考文献

参见